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Abstract

We report the discovery of nonstellar hydrogen Balmer and metastable helium absorption lines accompanying a
transient, high-velocity (0.05c) broad absorption line (BAL) system in the optical spectra of the tidal disruption
event (TDE) AT2018zr (z=0.071). In the Hubble Space Telescope UV spectra, absorption of high- and low-
ionization lines is also present at this velocity, making AT2018zr resemble a low-ionization BALQSO. We
conclude that these transient absorption features are more likely to arise in fast outflows produced by the TDE than
absorbed by the unbound debris. In accordance with the outflow picture, we are able to reproduce the flat-topped
Hα emission in a spherically expanding medium without invoking the typical prescription of an elliptical disk. We
also report the appearance of narrow (∼1000 kms−1) N III λ4640, He II λ4686, Hα, and Hβ emission in the late-
time optical spectra of AT2018zr, which may be a result of UV continuum hardening at late times, as observed by
Swift. Including AT2018zr, we find a high association rate (three out of four) of BALs in the UV spectra of TDEs.
This suggests that outflows may be ubiquitous among TDEs and less sensitive to viewing angle effects compared
to QSO outflows.
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1. Introduction

Occasionally, a star passing too close to a black hole may be
disrupted by tidal stresses. This results in an observable
transient flare of radiation powered by the accretion of about
half of the stellar debris onto the black hole (Rees 1988;
Phinney 1989). A significant amount of theoretical work has
been devoted to predicting the rate at which the stellar debris
falls back to the pericenter. For black holes with MBH
107Me, the fallback rate—and the accretion rate, if circular-
ization is efficient—may exceed the Eddington rate at early
times (Evans & Kochanek 1989; Ulmer 1999; Strubbe &
Quataert 2009; Lodato & Rossi 2011; Metzger & Stone 2016;
Wu et al. 2018), leading to the formation of radiation-powered
winds or jets.

Observations across all wavelengths have revealed that
outflows may be ubiquitous among tidal disruption events
(TDEs). In the well-studied TDE ASASSN-14li, highly ionized
outflows have been detected at both low (a few×100 km s−1;
Miller et al. 2015) and high (∼0.2c; Kara et al. 2018) velocities
in the X-ray. Radio observations of ASASSN-14li also

revealed the presence of a subrelativistic outflow (Alexander
et al. 2016) or an off-axis relativistic jet (van Velzen et al.
2016; Pasham & van Velzen 2018).
Spectroscopy is a powerful tool for probing the kinematics

and physical conditions in TDEs. Especially in the far-UV
(FUV), spectroscopy can shed light on the ionization structures
owing to the wealth of atomic transitions encompassed in this
wavelength range. For the three TDEs that were observed with
the Space Telescope Imaging Spectrograph (STIS) on board the
Hubble Space Telescope (HST), blueshifted absorption lines at
FUV wavelengths that signify the presence of outflows were
detected in all three sources, namely, ASASSN-14li,
iPTF16fnl, and iPTF15af (Cenko et al. 2016; Blagorodnova
et al. 2019; Brown et al. 2018). These absorption lines are
thought to be “intrinsic,” meaning that the absorbing gas is
physically close to the TDE. In particular, the broad, saturated
absorption troughs of high-ionization transitions in iPTF15af
are reminiscent of those seen in broad absorption line (BAL)
QSOs. Blagorodnova et al. (2019) concluded that these features
could only form in absorbers with high column densities
NH>1023 cm−2.
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Although the current sample of UV spectroscopy of TDEs is
small, a few spectroscopic distinctions between TDEs and
QSOs have emerged in the past few years. For example,
common quasar emission lines such as Mg II λλ2796, 2803 and
C III] λ1909are either weak or entirely missing in TDE spectra.
The absence of Mg II λλ2796, 2803 may be explained if these
TDEs have a hotter continuum that has photoionized most Mg
to higher ionization states (Cenko et al. 2016; Brown et al.
2018). On the other hand, the prominent N III] λ1750 relative to
C III] λ1909 in TDEs may imply abundance anomalies due to
the CNO cycle in the predisrupted star (Cenko et al. 2016;
Kochanek 2016). Simulations have shown that the anomalous
abundance features should be present after the time of peak
fallback rate (tpeak) and are more significant in higher-mass
stars (Kochanek 2016; Yang et al. 2017; Gallegos-Garcia et al.
2018).

Observationally, TDEs have been discovered at a rate of one
to two per year. We expect to see an order-of-magnitude
increase in the TDE discovery rate from the combined yield of
ground-based optical surveys since the beginning of 2018 (e.g.,
Hung et al. 2018). In light of this opportunity, we have started a
monitoring campaign to obtain a series of UV spectra of newly
discovered TDEs with HST. The first target of this campaign
(Program ID 15331; PI: Cenko) is AT2018zr (aka PS18kh). In
this paper, we present the analysis of the intensive spectro-
scopic observations of the TDE AT2018zr spanning across the
UV and optical wavelengths in the first 3 months since
discovery, plus two late-time (Δt=169 and 248 days) optical
spectra.

While inspecting the data, we discovered a high-velocity
(∼0.05c) BAL system that is accompanied by nonstellar
hydrogen Balmer and metastable helium absorption, the first
time this has been observed in a TDE. The high signal-to-noise
ratio (S/N) optical spectra enabled us to propose that a
spherically expanding outflow is preferred over the elliptical
disk model (Holoien et al. 2018) for generating the observed
flat-topped Hα line.

This paper is structured as follows. We summarize the
discovery and photometric observations of AT2018zr in
Section 2, detail the observation configurations and data
reduction for the UV and optical spectra in this work in
Section 3, describe our analysis of the emission and absorption
features identified in the data in Section 4, and compare these
observations with other TDEs and discuss the results in
Section 5. We summarize our findings in Section 6.

2. Discovery of AT2018zr

The TDE AT2018zr (aka PS18kh) was first discovered by
Pan-STARRS1 on UT 2018 March 2 (Holoien et al. 2018;
Tucker et al. 2018). The flare is coincident (offset 0 1) with
the galaxy SDSS J075654.53+341543.6 at a redshift of
z=0.071 (Section 3.2). Archival observations of this galaxy
suggest that it is dominated by an old stellar population
(tage=9.8 Gyr) with a stellar mass of 5×109Me (van Velzen
et al. 2019). The lack of X-ray emission prior to the TDE flare
suggests little or no active galactic nucleus (AGN) activity
(Holoien et al. 2018). A black hole mass of ≈107Me is
inferred from the host photometry (Holoien et al. 2018; van
Velzen et al. 2019). While the Zwicky Transient Facility (ZTF;
Bellm et al. 2019; Graham et al. 2019) was still in the
commissioning phase, the survey serendipitously observed this

object from 2018 February 7. A complete set of ZTF light
curves of this source can be found in van Velzen et al. (2019).
Holoien et al. (2018) and van Velzen et al. (2019) analyzed

the broadband multiwavelength (UV/optical/X-ray/radio)
properties of AT2018zr. Before the object was Sun-con-
strained, they found that the UV and optical emission of this
source corresponds to a constant blackbody temperature of
» ´T 1.4 104 K in the first 40 days, then increases to

T≈2.2×104 K (Holoien et al. 2018; van Velzen et al.
2019). A weak, thermal (kT∼100 eV) X-ray source 2 orders
of magnitude less luminous than the UV was detected (van
Velzen et al. 2019). The late-time (Δt170 days) UV/optical
photometric observations show a significant increase in the
blackbody temperature (T5×104 K), while the X-ray flux
remains almost the same (van Velzen et al. 2019).
While van Velzen et al. (2019) focused on the broadband

optical–to–X-ray behavior of AT2018zr, Holoien et al. (2018)
included analysis of the optical spectra of AT2018zr. Their
observations were made in the first 3 months of discovery
before the target became Sun-constrained. Their analysis used a
combination of wind, elliptical disk, and spiral arm to fit the
Hα line profile and inferred a large size for the accretion disk
(rin∼500 rg and rout∼15,000 rg).
In this work, we present the first analysis of the multi-epoch

HST UV spectra of AT2018zr in conjunction with optical
spectroscopic observations obtained independently in the time
frame of the observations in Holoien et al. (2018). Although
our optical spectroscopic data set is similar to that in Holoien
et al. (2018), we use a different model to interpret the emission
line shape (Section 4.3.2) for the data obtained in the same time
period. Furthermore, our optical spectroscopic observations
extend to later epochs (Δt170 days) to study the late-time
spectroscopic evolution of this TDE, which have not been
reported before.

3. Observations

After it was confirmed that AT2018zr was bright in the UV
from the Neil Gehrels Swift Observatory (Swift; Gehrels et al.
2004) observations, we triggered a series of spectroscopic
follow-up observations with HST STIS, as well as other
ground-based optical telescopes. No observations were made
when the target went behind the Sun from 2018 June to
August. We resumed following up this source when it became
visible again in 2018 September. All the spectra presented in
this paper have been corrected for galactic extinction using the
Schlafly & Finkbeiner (2011) dust map. Assuming a Cardelli
et al. (1989) extinction curve, using RC=3.1 and E(B−V )=
0.0404±0.0006 at this position corresponds to a Galactic
visual extinction of AV=0.124 mag. No correction has been
made for any internal extinction. Throughout this paper, we
adopt a flat ΛCDM cosmology with H0=69.3 km s−1 Mpc−1,
Ωm=0.29, and ΩΛ=0.71 (Bennett et al. 2013). The time
difference (Δt) is expressed in rest-frame time with respect to
the r-band maximum at MJD 58,194.49.

3.1. HST STIS Spectra

We obtained five epochs of UV spectra of AT2018zr with
HST STIS (GO 15331; PI: Cenko) on 2018 April 11 (Δt=
23 days), 25 (Δt=36 days), and 30 (Dt=41 days) and May
20 (Δt=59 days) and 23 (Δt=62 days). The spectra were
obtained through a 52″×0 2 aperture. For the near-UV
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(NUV) and FUV MAMA detectors, the G140L and G230L
gratings were used in order to cover the spectral ranges of
1570–3180 and 1150–1730Å at resolutions of 1.2 and 3.2Å,
respectively. During each visit, the observation was obtained
over three HST orbits, with three equal exposures of 674 s in
the NUV and six equal exposures of 920 s in the FUV. We
combined the one-dimensional spectra for each epoch using
inverse-variance weighting. The HST spectra of AT2018zr
have similar S/Ns to previous HST spectra for TDEs. For the
FUV side of the spectrum, the S/N is ∼6, while the S/N is ∼9
for the NUV side.

3.2. Optical Spectra

We obtained 15 optical spectra of AT2018zr in total. The
observing configuration for each spectrum is detailed in
Table 1. The data obtained with the spectral energy distribution
machine (SEDm), an integral field unit spectrograph, were
automatically processed by the data reduction pipeline and
flux-calibrated with the observations of spectrophotometric
standard stars (Blagorodnova et al. 2018).

Spectra obtained with the Auxiliary-port CAMera (ACAM)
on the 4.2 m William Herschel Telescope (WHT), the DeVeny
spectrograph on the Discovery Channel Telescope (DCT), the
Double Beam Spectrograph on the Palomar 200 inch (P200)
telescope, and with Gemini/GMOS-N were reduced with
standard IRAF routines. We performed bias subtraction and
flat-fielding in the raw science frames and extracted the one-
dimensional spectrum. Afterward, we performed wavelength
and flux calibration using observations of the arc lamp and flux
standard stars from the same night.

Data obtained with the Keck Low-Resolution Imaging
Spectrometer (LRIS; Oke et al. 1995) were reduced with the
LRIS automated reduction pipeline.15

We measured a redshift of z=0.071±0.001 using
CaH+K λλ3969, 3934 and the near-infrared Ca II triplet
(8498, 8542, and 8662Å) absorption lines that originated from
the host galaxy from the late-time Keck spectrum obtained in
December 2018. Our redshift measurement is consistent with

the value (z=0.074) estimated by Holoien et al. (2018) based
on Hα emission.

4. Analysis

The interpretation of the UV and optical spectra is
complicated by the presence of a high-velocity transient BAL
system at v≈1.55×104 km s−1 (Section 4.1). This BAL
system manifests in UV and optical absorption troughs on top
of the TDE continuum or, sometimes, the emission lines. The
rest-frame optical BALs such as the hydrogen Balmer series
and the metastable helium lines are particularly rare even in
BALQSOs. In the following subsections, we carefully account
for these absorption features while identifying and measuring
the UV and optical emission lines.

4.1. Absorption Lines

We identified highly blueshifted hydrogen Balmer series,
He I *λ3889, and He I *λ5876transitions in the Keck optical
spectrum from Δt=50 days. These features can be easily seen
when the spectrum is normalized with respect to the continuum,
as shown in Figure 1. We modeled these lines with a single
Gaussian and present the equivalent width (EW) and FWHM
measurements for the hydrogen and helium absorption lines in
Table 2. Because the H Balmer and He I absorption lines are
often accompanied by contamination from nearby features, the
definition of the local continuum is more uncertain. For example,
the EW measured for the Hα absorption should be viewed as a
lower limit, since the blueshifted Hα absorption is close to the
broad blue wing of the Hα emission. Given that the blueshifted
Hγ absorption may be susceptible to Hδ emissions in the TDE
rest frame, the measured EW should also be considered as a
lower limit. We measured an FWHM of 2720±200 km s−1 for
Hβ absorption, which is the strongest blueshifted optical
absorption line that is free from contamination. From these
lines, we derived a mean velocity of (15,500±400) km s−1 by
employing the relativistic Doppler equation. Absorptions at this
velocity also match with the troughs seen in the HST STIS
spectra in both high (NV λ1240, Si IV λ1397, N IV] λ1486,
C IV λ1549, N III] λ1750, C III] λ1909, and Al III λ1857) and
low (Si II λ1265, C II λ1335, [O I] λ1304, and Mg II λλ2796,
2803) ionization lines in the last two epochs (days 59 and 62).

Table 1
Observing Details of the Optical Spectra of AT2018zr

Obs. Date Phase (days) Telescope + Instrument Slit Width Grism/Grating Exp. Time (s)

2018 Mar 7 −10 P60 + SEDm N/A 1800
2018 Mar 26 8 P60 + SEDm N/A 1800
2018 Mar 27 9 P60 + SEDm N/A 2700
2018 Mar 28 10 WHT + ACAM 1 0 V400 3200
2018 Apr 4 16 DCT + DeVeny 1 5 300g/mm 2400
2018 Apr 11 23 DCT + DeVeny 1 5 300g/mm 2400
2018 Apr 17 28 Keck I + LRIS 1 0 400/3400+400/8500 1250
2018 Apr 19 30 Gemini + GMOS-N 1 0 B600 600
2018 May 5 45 Gemini + GMOS-N 1 0 B600 600
2018 May 6 46 DCT + DeVeny 1 5 300g/mm 3000
2018 May 10 50 Keck I + LRIS 1 0 600/4000+400/8500 L
2018 May 13 53 DCT + DeVeny 1 5 300g/mm 1800
2018 May 19 58 DCT + DeVeny 1 5 300g/mm 900
2018 Sep 14 169 Keck I + LRIS 1 0 600/4000+400/8500 1200
2018 Dec 8 248 Keck I + LRIS 1 0 600/4000+400/8500 3600

Note. The Keck Low-Resolution Imaging Spectrometer (Oke et al. 1995).

15 http://www.astro.caltech.edu/~dperley/programs/lpipe.html

3

The Astrophysical Journal, 879:119 (17pp), 2019 July 10 Hung et al.

http://www.astro.caltech.edu/~dperley/programs/lpipe.html


We stacked the two HST spectra, as there is little spectroscopic
evolution during this time, and we give a list of detected UV
absorption lines in Table 3. We also include measurements of the
absorption central wavelength and the width in the TDE rest
frame, where possible.

The relative line intensities of multiple hydrogen Balmer
transitions are often used to constrain neutral hydrogen column
density. Assuming all photons irradiated by the continuum pass
through the same amount of gas at a given velocity, the
observed radiation should have the form

= + -l
t

l
t- -l lI I e B T e1 , 1c l( )( ) ( )

where Ic is the radiation of the continuum source and Tl is the
line excitation temperature. Assuming that Tl is negligible
compared to the continuum temperature (Tc), the relative line
depression can be expressed as

=
-

= -l t-I v
I I

I
C v e1 , 2c

c

v( ) ( )( ) ( )( )

where I(v) is the normalized intensity of the absorption trough,
C(λ) is the line-of-sight covering factor of the absorber in
percentage, and τ(v) is the optical depth of the given transition.
We note that in the case where the above assumption is invalid

Figure 1. Zoom-in views of the UV and optical spectra with high-velocity (v=15,500 km s−1) absorption features indicated by black (detected) and gray (not
detected) labels. The top two panels show the HST spectrum observed at Δt=59 days. Since it is hard to cleanly define the continuum in the UV, we draw a
T=22,000 K blackbody spectrum (gray dashed line) to guide the eye. The wavelengths of the geocoronal airglow lines are indicated by ⊕. Contamination from the
host galaxy (Si III λ1206 and Lyα) is shown by the vertical gray bands. We also mark emission lines at the rest wavelength of the TDE in blue (detected) and
purple (not detected). The middle panel shows the host-subtracted Keck spectrum from Δt=50 days, which has the widest wavelength coverage in the optical. We
define the continuum by manually selecting the line-free regions, as marked by the red squares, and interpolating linearly between these regions. The normalized
spectrum is shown in the two bottom panels.
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(Tl is nonnegligible), the EW of the line will be altered by a
factor of (1−Bλ(Tl)/Ic). This effect on the observed line EW
is degenerate with that of the covering factor.

The column density N of an ionic species can be
expressed as

ò

ò

p l
t

l
t

=

=
´ -

N
m c

e f
v dv

f
v dv

3.768 10 cm
, 3

e
2

0

14 2

0

( )

( ) ( )

where f is the oscillator strength and λ0 is the rest wavelength
in Å. The optical depth ratio can be derived under the
assumption that the absorbing gas is in local thermodynamic
equilibrium. The relative line center opacity (τ) between
transitions 1 and 2 can be simplified to (Arav 2001)

t
t

l
l

=
g f

g f
, 41

2

1 1 1

2 2 2
( )

where g is the statistical weight of the lower level, f is the
oscillator strength, and λ is the wavelength of the transition.

It is clear from the line ratios that the H Balmer absorption
lines are quite saturated. If the H Balmer absorptions were
optically thin, the EW ratio for the H Balmer series would be
close to τHα:τHβ:τHγ:τHδ:τHò≈81.5: 11.2: 3.8: 1.8: 1. How-
ever, as shown in Table 2, the observed EWs of all of the H

Balmer lines are very similar, suggesting that these lines are
largely suppressed due to nonnegligible optical depth.
From the normalized spectrum, we also noticed that the

absorptions are nonblack, meaning they do not extend down to
zero. This is a clear sign of partial covering, where the
absorbing material does not cover the photoionizing continuum
entirely.
We first model the observed Balmer absorption lines with

Equation (2) by locking the relative opacity for each transition
and assuming a constant covering factor (C0) across all
hydrogen line profiles. The best-fit parameters from directly
fitting the observed spectrum are C0=0.2 and τ0,Hβ=1.5.
We convert this to an H I(n=2) column density of
1.5×1015 cm−2 with Equation (2). However, the optical
depth, and therefore the H I(n=2) column density derived
from direct fitting, may underestimate the actual values. The
opacity is strongly suppressed by the fitting routine, since the
model absorption line shape becomes flat-topped as it saturates,
while the observed absorption features are more peak-like. One
possibility is that each absorption trough is comprised of
multiple unresolved narrow components with different velo-
cities and covering factors. rather than a single broad
component.
Rather than fitting the line profile, we instead use the curve-

of-growth method to model the total opacity summed over the
H Balmer transitions. We exclude the use of Hα and Hγ in the
fit due to uncertain contributions from nearby emission lines.
Shown in Figure 2, our best-fit Gaussian parameter (b), ionic
column density (N), and covering factor are b=313±
170 km s−1, log10NHI(n=2)=17.6±0.9 cm−2, and log10C=
−0.6±0.2, respectively. The high opacity of the Balmer lines
places the data points on the logarithmic regime of the curve,
where the EW (Wλ) is relatively insensitive to N
( µlW b N bln( ) ). The large uncertainty in b may be
attributed to the fact that this parameter is degenerate with
the covering factor. However, the absorber needs to cover at
least 15% of the continuum as measured from Hβ. Therefore, b
must be narrower than ∼500 km s−1, which translates to an
FWHM of ∼900 km s−1. Considering these effects, the true
NHI(n=2) should be even higher, placing a lower limit for
τHβ720.

4.2. UV Spectroscopy

We present five epochs of HST spectra in Figure 3, where
blackbody spectra with temperatures derived from the broad-
band NUV and optical photometry (see van Velzen et al. 2019)

Table 2
Optical Absorption Features

Line λ0 f a vrel EW FWHM
(Å) (km s−1) (Å) (103 km s−1)

Hα 6564.64 0.641080 −16,560±560 2.77±1.53b 2.52±1.32
He I 5875.00 0.610230 −15,230±120 9.10±1.07 3.12±0.21
Hβ 4862.70 0.119380 −15,380±90 5.00±0.39 2.72±0.20
Hγ 4341.69 0.044694 −15,530±120 3.55±0.86b 2.32±0.25
Hδ 4102.90 0.022105 −15,390±80 5.16±0.13b 2.98±0.20
Hò 3970.00 0.012711 −15,870±120 4.11±0.16 3.01±0.29
He I* 3888.65 0.064474 −15,640±160 2.44±0.14 2.32±0.35

Notes. EW measured in TDE rest frame.
a Oscillator strength (Wiese & Fuhr 2009).
b Measurements are subject to contamination from nearby spectroscopic features.

Table 3
Detected UV Absorption Lines in AT2018zr

Line λ0 λc
a Velocity FWHM

(Å) (Å) (km s−1) (km s−1)

N V 1240 1182–1203b L L
Si II 1263 1182–1203b L L
O I 1302 1230 16,900 3300
C II 1334.43 1263 16,500 2000
Si IV 1398.0 1320 18,000 9800
N III 1500.0 1422 16,100 1800
C IV 1548.20 1460 19,000 8800
Al III 1856.76 1760 16,500 1900
C III] 1909.0 1810 16,000 11,000
Mg II 2796.3, 2803.4 2652 16,200 2600

Notes.
a Central wavelength of the transition measured in host rest frame.
b Cannot be determined due to blending with neighboring lines.
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are overplotted with gray dashed lines. Traditionally, observers
found the UV and optical photometry measured by Swift in TDEs
in agreement with a blackbody spectrum with ~ ´T few 104 K
(e.g., Holoien et al. 2016a; Hung et al. 2017). However, this
agreement has not been carefully examined blueward of the Swift
UVW2 band (central wavelength 1928Å). In fact, previous work
has also suggested that a significant amount of TDE radiation may
be emitted in the extreme UV (e.g., Dai et al. 2018). Therefore,
while the blackbody spectrum captures the general shape of the
NUV spectra in all five epochs, the FUV continuum cannot be
determined as accurately. We also note that this blackbody
spectrum cannot account for the X-ray flux that was observed in
AT2018zr. A second blackbody of T∼100 eV is required to
describe the entire SED (van Velzen et al. 2019).

The UV spectra of AT2018zr show complex features, where
broad emission and absorption are variable and often blended
together, making it difficult to measure these lines accurately. In
particular, the high-velocity BAL features (Section 4.1) only
become discernible in the UV spectra in later epochs. Despite the
uncertainties in FUV continuum placement, we study the
evolution of the FUV lines by assuming the underlying
continuum is a single blackbody, with temperatures extrapolated
from NUV and optical observations. Here we summarize the
observed properties of these features qualitatively.

1. The Lyα emission line is blueshifted by about
3000 km s−1 in all five epochs. Assuming no additional
source of FUV continuum flux, the Lyα line flux
becomes ∼50% more prominent after Δt≈59 days.

2. High-ionization N V λ1240 emission may be present but is
blended with the red wing of the broad Lyα; therefore, the
N V λ1240 emission peak cannot be individually resolved.

3. The high-ionization emission line Si IV λ1397 is also
blueshifted by ∼3000 km s−1 with respect to the rest
frame of the host similar to the Lyα emission.

4. In the first two epochs, there is a marginally detected
broad feature (FWHM∼1.3×104 km s−1) at the rest
wavelength of Mg II λλ2796, 2803.

5. The likely presence of N V λ1240 emission and the
absence of the C IV λ1549 emission line in AT2018zr
may be associated with the enhanced nitrogen-to-carbon
(N/C) ratio (see (N V/C IV)0.1 for QSOs; Vanden
Berk et al. 2001) reported in previous TDEs ASASSN-
14li, iPTF16fnl, and iPTF15af (Cenko et al. 2016;
Blagorodnova et al. 2019; Brown et al. 2018). We do
not detect N IV] λ1486 or N III] λ1750 emission as in
previous TDEs.

6. None of the emission peaks shifted significantly over the
monitoring period, which suggests that the kinematics of
the UV line-emitting region did not vary much in the first
2 months.

7. The absorption features at v∼15,500 km s−1 are weak or
completely absent in the first three epochs. In the last two
epochs, absorption lines including high-ionization lines
N V λ1240, Si IV λ1397, and C IV λ1549 and low-
ionization lines [O I] λ1304, C II λ1335, Si II λ1265,
C III λ977, Al III λ1857, and Mg II λλ2796, 2803 are
detected in the spectra. The UV absorption features
detected in AT2018zr are consistent with those seen in
low-ionization BAL (LoBAL) QSOs.

8. The UV BALs are saturated and nonblack, suggesting
partial covering of the continuum source. In the later two
epochs, the UV absorptions are also seen to be shallower
than the emission lines (e.g., Lyα), which indicates that
the BAL system does not cover the line-emitting region
entirely, either.

4.3. Optical Spectroscopy

At optical wavelengths, the host galaxy contributes a
nonnegligible amount of flux to the observed spectrum. Since
there was no pre-flare spectrum of the host galaxy, we
estimated the host flux in our spectroscopic aperture by fitting a
synthetic galaxy spectrum with SDSS model magnitudes (van
Velzen et al. 2019). To perform subtraction of the host flux, we
first calibrated the flux level in each optical spectrum against
Swift V-band photometry, interpolated to the spectroscopic
epochs. We then convolved the synthetic host galaxy spectrum
with a Gaussian kernel to account for instrumental broadening
and subtracted the broadened, synthetic spectrum from our
observed spectra. We show the broadened model spectrum
along with the late-time Keck spectrum in Figure 4 to
demonstrate the difference between the model and the data.
The Keck spectrum is a superposition of the TDE continuum
and lines and the host galaxy spectrum. While it is harder to
assess the validity of the model with Hα and Hβ given the
complicated structure of the emission lines from the TDE, other
stellar absorption lines (such as the Ca II) that are free from
TDE line emission match the model pretty well. We note that it
is not possible to reconstruct all of the narrow absorption lines
accurately by fitting stellar population synthesis models to
broadband photometry of the host. In addition, any mismatch in
the resolution between the data and model can also lead to
over-/undersubtraction around the absorption line regions. We
note that TDEs are dominated by low-mass black holes
(Wevers et al. 2017) whose host galaxies have velocity
dispersion (100 km s−1) that cannot be resolved in the low-
resolution (R<3000) spectra. Therefore, one should be aware
that any narrow features with a width similar to the
instrumental resolution appearing at the wavelengths typical

Figure 2. Curve-of-growth analysis of the Balmer absorption lines. Only Hβ,
Hδ, and Hò are used in the fit. The best-fit curve with b=313 km s−1,
C=0.25, and log10N=17.6 cm−2 is shown in red. The shaded area shows
the region bounded by the 1σ uncertainty in the Gaussian parameter
(σb=170 km s−1). We also plot our data with log10N=16.6 cm−2(green)
and log10N=18.6 cm−2(pink) on the growth curve. In this high-opacity
regime (τ>1), the EW is insensitive to N.
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of stellar absorption lines could be from the host and leave
imprints on the host-subtracted spectrum. Such effects can be
seen in the Hβ line in Figure 6, which can sometimes be
misidentified as a double-peaked feature.

A montage of the host-subtracted spectra is shown in Figure 5.
The fluxes are normalized to the 5500–6000Å region in rest
wavelength and offset from each other for better visualization.
We use the host-subtracted, Galactic extinction–corrected optical

spectra in all of our analyses. The same host galaxy model is
assumed throughout this work (Figure 4).
We describe our modeling of the optical emission lines

before and after the Sun-constrained break separately, because
the line profiles were dramatically different after the break.
Both broad Hα and Hβ lines were readily detected in the

spectra from day 10 onward. The strength of these lines grew
monotonically with time in the first 2 months. In the earlier set

Figure 3. The HST STIS spectra of AT2018zr observed at different epochs, where Δt indicates the rest-frame time elapsed since the peak in the r band (MJD
58,194.5). To guide the eye, the gray dashed line marks the tentative FUV continuum extrapolated from a blackbody spectrum that is used to describe the NUV and
optical SED. The blackbody spectra correspond to a temperature of T=1.7×104 K for the first three epochs and T=2.2×104 K for the last two epochs. The black
squares indicate the interpolated broadband flux measured by Swift.

Figure 4. Comparison of the synthetic host model (red) and the late-time Keck data (black) from Δt=248. The insets show the zoom-in view of the regions around
Ca II] λλ3934, 3969, Hβ, and Hα. We offset the model by a constant in the insets for ease of comparison. Uncertainties in the host model or mismatched Gaussian
kernel may cause over-/undersubtraction around the stellar absorption features. Such effects may leave the broad features in the final host-subtracted spectrum looking
like a double-peaked profile.
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of spectra with good S/N, we noticed that the Hα and
Hβemission profiles were asymmetric, with what appeared to
be a “dent” in the red wing (Figure 1). Although the positions
of these “dents” are consistent with He I λ7065 and Fe II λ5235
blueshifted by the same velocity as the BAL system, the width
and depth are broader and stronger than the other optical
absorption lines. Given the similarity in the line profile shapes
of Hα and Hβ (Figures 6 and 8), this asymmetry is more likely
the result of emission line region geometry than contamination
from neighboring absorption lines.

Interestingly, the flat-topped H Balmer emission profiles in
AT2018zr in the earlier monitoring period differ from the
Gaussian emission lines seen in other TDEs. This motivated
Holoien et al. (2018) to fit these lines with a model that
combines the effects of an elliptical disk, spiral arm, and wind.
Here we use two different approaches to model the observed
lines, including (1) phenomenological fitting with two
Gaussians and (2) a radiative transfer equation in a spherical
outflow.

4.3.1. Double Gaussian Model

In our initial attempt to fit these lines, we noticed that the line
profiles, especially Hα, cannot be well described by a single
Gaussian (green solid line in Figure 6). Therefore, we chose to
fit each flat-topped Balmer line with two Gaussians simulta-
neously. The choice of model was not motivated by the
underlying physics of line formation but rather to obtain a
satisfactory description of the line profiles. This allows us to
measure the FWHM and line luminosity for comparison with
other TDEs.
We first measured the continuum level in the spectral lines

by performing a quadratic fit to the region enclosing the
lines (4630–5150Å for Hβ and 5950–6950Å for Hα).
Although we have subtracted the synthetic galaxy from our
observed spectra prior to measuring the lines, we find the

Figure 5. Host-subtracted optical spectra of AT2018zr color-coded by epoch. The first three spectra (from top) were obtained by the low-resolution SEDm. The
telescope and instrument that took each spectrum are listed in Table 1. The original data are plotted in pale gray under the smoothed spectra. All spectra shown here
have been binned in wavelength by 3, except for the Keck spectrum on day 31, which is binned by 5 pixels due to higher noise. The corresponding phase (Δt) is
indicated to the right of each spectrum.

Figure 6. Gaussian model fit to Hα (right) and Hβ (left) lines in the Keck LRIS
spectrum from 2018 May 10. We show the best-fit result of a single Gaussian
(green line) and a double Gaussian model (purple line). It is clear from the plot
that the flat-topped profile cannot be fitted well by a single Gaussian.
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spectra near the Hα and Hβ line centers to be noisy and may
still have residual contribution from the host. Therefore, we
masked the line centers while fitting the emission lines. In the
two-component fit, we allowed the line centers, line widths,
and amplitudes to vary freely and derived the best-fit model by
performing χ2 minimization. The two best-fit Gaussians
naturally center blueward and redward of the rest wavelength
of the line to produce the flat-topped shape.

The best-fit two-component model is marked in purple in
Figure 6. From the best-fit models, we measured the
luminosity, EW, and FWHM for both Hα and Hβ lines. These
parameters are tabulated in Tables 4 and 5.

4.3.2. Spherical Outflow Model for Emission Lines

Roth & Kasen (2018) demonstrated that in TDE outflows, the
blue absorption wing of a classical P Cygni profile may appear
mostly as emission if the line excitation temperature is sufficiently
high. Given the similarity of their theoretical line profile to our
observations, we also fit the Hα emission with this radiative
transfer model proposed by Roth & Kasen (2018) for three
different epochs.

We consider a spherically symmetric, homologously
expanding (v∝r) medium. A continuum photosphere is
located at radius rph, which is responsible for emitting the
observed continuum flux at wavelengths near Hαat the time of
interest. The gas density falls off as r−2 at radii beyond rph out
to a maximum radius rout, where the velocity is vmax. The line
absorption opacity κl and the line Doppler width vD are set to
single values at all positions outside the continuum photo-
sphere. The line excitation is set by Tex=a+b/r, where a
and b are chosen so that the line excitation temperature equals a
specified value Tex,ph at the photosphere and Tex,out at rout. The
Sobolev approximation can then be used to calculate the
observed emission by integrating the line source function along
lines of sight passing through the line-emitting material, as in
Jeffery & Branch (1990) and Roth & Kasen (2018). The
strength of the emission line with respect to the continuum flux

is then related to the Sobolev depth τS at each radius:

t p r k=
-

r r v
dv

dr
. 5S l D

1
⎜ ⎟⎛
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For the conditions considered here, the electron-scattering
optical depth is negligible for the line photons.
Rather than perform a full multidimensional fit, we set all

parameters to the fiducial values listed in Table 6 and then adjust
the value of τS(rph) between spectral epochs until we judge by
eye that a satisfactory fit has been achieved. The continuum flux
is also adjusted between epochs to match what is observed. The
resulting values are listed in Table 7. Given the definition of τS,
the values of κl and vD are degenerate in this formulation, since
only their product enters into the calculation, as long as
vD=vmax. The results are plotted in Figure 7.

4.3.3. Late-time Optical Spectrum

The spectroscopic features showed dramatic changes (Figure 8)
at late times (Δt=169 and 248 days). First, He II λ4686 and

Table 5
Hβ Line Parameters

Phase FWHM EW Luminosity
(days) (104 km s−1) (Å) (1041 erg s−1)

10 1.14±0.22 21±2 1.0±0.2
16 1.05±0.56 27±11 1.1±0.6
23 1.23±0.18 33±3 1.2±0.2
28 1.17±2.78 46±283 1.6±5.3
30 1.17±0.22 42±2 1.4±0.2
45 0.96±0.63 39±13 1.2±0.5
46 0.96±0.59 41±11 1.3±0.5
50 1.20±0.09 47±1 1.5±0.1
53 1.11±0.36 27±12 0.9±0.4
58 0.89±1.04 34±48 1.1±0.9
169 0.15±0.05 L <0.1
248 0.19±0.02 L <0.1
169n 0.05±0.02 L (2.0±1.4)×10−2

248n 0.04±0.01 L (1.8±0.4)×10−2

Table 7
Continuum Fluxes and Sobolev Depths Used in the Hα Line Profile Fits,

Which Were Varied between Spectral Epochs

Δt (days) 23 30 50

τS(rph) 0.39 0.48 0.47
Continuum flux 1.02×10−16 9.80×10−17 6.81×10−17

(erg cm−2 s−1 Å−1)

Table 4
Hα Line Parameters

Phase FWHM EW Luminosity
(days) (104 km s−1) (Å) (1041 erg s−1)

10 1.35±0.81 86±17 2.0±0.2
16 1.26±0.17 89±4 1.9±0.3
23 1.39±0.12 146±4 3.4±0.4
28 1.42±1.62 188±403 4.0±8.9
30 1.42±0.10 198±3 4.4±0.4
45 1.39±0.09 224±2 5.2±0.2
46 1.28±0.13 202±7 3.8±0.4
50 1.44±0.21 265±26 5.3±1.5
53 1.35±0.13 159±4 3.2±0.3
58 1.42±0.38 190±11 4.2±0.3
169 0.43±0.18 L 0.2±0.1
248 0.35±0.07 L <0.1
169n 0.11±0.07 L (8.7±2.0)×10−2

248n 0.07±0.03 L (4.9±0.8)×10−2

Note. Heren denotes the measurements for the narrow components. We do not
calculate the EW in late-time spectra due to the complexity in separating the
broad and narrow components. Table 6

Fiducial Parameters for the Spherical Outflow Model of the HαLine Profiles

rph rout vmax ρph Tex,ph Tex,out
(cm) (cm) (104 km s−1) (g cm−3) (K) (K)

1015 3×1015 1.75 1.16×10−15 3×104 104

Note. These values were kept the same between the three spectral epoch fits.
The gas density is assumed proportional to r−2, and the gas velocity is assumed
proportional to r (and is entirely radially outflowing). The line excitation
temperature drops as a+b/r, where a and b are chosen to match the listed
excitation temperature values at the photosphere radius and the outer radius.
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N III λ4640Å, a strong transition of the Bowen fluorescence (BF)
mechanism, emission lines are readily detected on day 248, while
the detections are somewhat tentative on day 169. In BF, the
He IILyα photons at 303.783Å can excite a number of nearby
transitions, which decay into optical emission lines such as
O III(at 3133, 3429, and 3444Å) and N III λ4640Å. Emission
lines of BF have been detected in systems such as planetary
nebulae and X-ray binaries and also in TDE iPTF15af
(Blagorodnova et al. 2019).
The late appearance of the He II λ4686 emission is unlike

most other TDEs to date (e.g., PS1-10jh; Gezari et al. 2012),
where hydrogen emission is often suppressed relative to helium
at early times (Roth et al. 2016). The absence of the
He II λ4686 line may be attributed to the lack of He II ionizing
photons (χion=54.4 eV) at earlier times. This is supported by
the fact that the blackbody temperature of AT2018zr is cooler
than many other TDEs at first but warms up drastically at later
times (van Velzen et al. 2019). The hot continuum indicated by
the late-time Swift observations would naturally explain the
emergence of the He II λ4686 emission.
The broad Hα and Hβ emission had become extremely weak

when we revisited this source on Δt=169 days. Instead,
narrow Hα and Hβ emission emerged at a velocity close to the
rest frame of the host galaxy. The most striking difference is
found in the Hα and Hβ lines, which are now dominated by
two strong narrow components, whereas the broad Hα and
Hβemission have vastly diminished, though they can still be
seen. We measured Hα and Hβ in the late-time spectra with a
double Gaussian model, where both broad and narrow
components are initially centered at the rest wavelength of
the transition. We show the best-fit results in Tables 4 and 5.
The newly formed narrow Hα and Hβ emission has FWHMs
on the order of 1000 kms−1, which correspond to a virial radius
of ∼6×1017 cm assuming a black hole mass of 107Me.

5. Discussion

5.1. UV Spectra of TDEs

The TDE AT2018zr is the fourth one optically discovered
with HST UV spectroscopic observations. We compare its HST
spectrum with the other three—ASASSN-14li, iPTF15af, and
iPTF16fnl—in Figure 9 (Cenko et al. 2016; Blagorodnova et al.
2019; Brown et al. 2018). The only other TDE with a UV

Figure 7. The Hα line profiles, with fits to a spherical outflow model for the broad emission. An additional absorption component at the highest velocities is discussed
in Section 4.1.

Figure 8. Velocity profiles of He II λ4686 Hβ and Hα of AT2018zr at
Δt=50, 169, and 248 days. Narrow Hα, Hβ, and He II λ4686 emission
emerged 6 months after maximum light. The narrow line widths are on the
order of 1000 km s−1, which is only ∼10% of the broad Balmer line widths
from earlier epochs. We note that on day 50, Hα and Hβhave a similar
velocity profile that is dented on the red wing, which is likely to arise from the
geometry of the line-forming region.
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spectroscopic sequence (Brown et al. 2018) is iPTF16fnl. For
comparison, we also show a composite spectrum of LoBAL
QSOs from the FIRST Bright Quasar Survey (Brotherton et al.
2001) in green.

Because the high-velocity absorption features were weak or
completely absent in the first two HST epochs, we are able to
identify that the emission peaks of Lyα and Si IV λ1397 are
blueshifted by ∼3000 km s−1 with respect to the TDE rest
frame. The only object that exhibit blueshifted UV emission
(Lyα, Si IV λ1397) among the TDEs is AT2018zr. In
ASASSN-14li, the emission lines are near the systemic host
velocity (Cenko et al. 2016), while in iPTF15af and iPTF16fnl,
the emission lines are systematically redshifted (Blagorodnova
et al. 2019; Brown et al. 2018). The velocity of the emission
lines may arise from a combination of effects, including the
geometry, kinematics, and optical depth. In iPTF15af,
the redshifted broad emission lines are most likely caused by
the absorption of the blue wing at v≈−5000 km s−1. Brown
et al. (2018) obtained three epochs of HST spectra of iPTF16fnl
spanning a time coverage of ∼1 month. While analyzing the
evolution of iPTF16fnl, they found different evolution of the
central wavelength for high- and low-ionization lines. Speci-
fically, they found that the high-ionization emission lines were
initially redshifted by v∼2000 km s−1 but then evolved to
peak near the wavelengths of the corresponding transitions at
later times, while the low-ionization lines showed no apparent
shift at any given time. Since the UV spectrum of iPTF16fnl
exhibits blueshifted absorption troughs for Si IV λ1397 and
C IV λ1549 (FWHM∼6000 km s−1), they suggested that the
redshifted emission peaks may be due to the blue wings of the
emission lines being significantly absorbed as a result of an

outflow at earlier times. This would be consistent with our
finding that the BAL system is fast-evolving, on a timescale of
days to weeks. On the other hand, the peak of Lyα and
Si IV λ1397 emission in AT2018r did not show any significant
shift during the HST monitoring.
It is commonly observed in QSOs that the high-ionization

lines (e.g., C IV λ1549) are systematically blueshifted with
respect to the low-ionization lines (e.g., Gaskell 1982; Richards
et al. 2002). This blueshift is often attributed to the presence
of a radiatively driven wind (Gaskell 1982; Murray et al. 1995).
This may also be responsible for blueshifting (v≈
3000 km s−1) the Si IV λ1397 and even the Lyα emission in
AT2018zr. In fact, the velocity profile of the strong, blueshifted
Lyα emission is more similar to the Si IV λ1397 emission than
to the Hα emission (Figure 10). In the class of AGNs with
double-peaked broad Balmer emission lines, it has been
observed that the Lyα emission tends to be single-peaked
and narrower in width (Eracleous & Halpern 2003). This
difference has been attributed to Lyαbeing emitted from
higher-ionization gas originating in a wind, compared to
higher-density gas in the accretion disk producing the low-
ionization lines (Eracleous & Halpern 2003). Based on the
similar velocity, the observed Lyα emission may naturally
form in the same outflowing gas with intermediate velocity
(v≈3000 km s−1) as the Si IV λ1397 emission. We measured
a Lyα luminosity of 5.08×1043 erg s−1 from the first HST
epoch, which is at least 2 orders of magnitude stronger than the
Hα emission observed on the same night and 10 times larger
than the expected value from case B recombination (≈8.7).
This could be a consequence of continuum fluorescence in the
Lyman lines (Gaskell 2017).

Figure 9. Comparison with the UV spectra of other TDEs. The gray dashed line at the bottom of each TDE spectrum marks the continuum, which is approximated by
a blackbody spectrum of the corresponding temperature.
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5.2. Broad Balmer Emission Lines

In Figure 11, we show the evolution of the FWHM of Hα
and Hβ measured with the best-fit double Gaussian model. The
Hα line width of AT2018zr is comparable to ASASSN-14ae at
earlier times but broader than that of the other TDEs by a factor
of ∼30%. The FWHMs of the broad Hα and Hβ components
show little evolution before the 3 month long observational gap
but decreased by a factor of 3 at late time. This long-term
trend of line narrowing is also seen in other TDEs (Figure 11),
such as ASASSN-14ae and ASASSN-14li (Holoien et al.
2014, 2016b), though the blackbody luminosity in AT2018zr
did not decrease monotonically like in the other TDEs (van
Velzen et al. 2019). As derived by van Velzen et al. (2019), the
blackbody luminosity of AT2018zr decreased with time until
Δtpeak∼70 days post-peak and remained nearly constant up to
Δtpeak≈250 days. Nevertheless, neither the line-width evol-
ution in AT2018zr nor that in other TDEs conforms with the
results of AGN reverberation mapping, where the Hα line
width increases as the luminosity decreases due to less
recombination at outer radii (Holoien et al. 2016b), hence the
absence of the low velocity dispersion components.

The earlier (Δt�58) broad Hα FWHM corresponds to a
virial radius of ≈1.5×1015 cm, assuming a black hole mass of
106.9Me (van Velzen et al. 2019). During this period, the broad
Hα/Hβ line ratio follows the case B value closely, with a mean
of 3.1 and a standard deviation of 0.8. At late time, the average
Hα/Hβ line ratio is 7.1±0.9. The measured narrow
He II λ4686/Hα ratio from the last spectrum (Δt=248 days)
is ≈0.4, which is consistent with the case B prediction
assuming solar abundance (Hung et al. 2017). The presence of
strong He II λ4686 emission implies a strong ionizing con-
tinuum beyond 54 eV and gas with a high ionization parameter
(Gaskell & Rojas Lobos 2014).

The flat-topped line profile in AT2018zr is unique among the
optical TDEs discovered so far. In AGNs, the flat-topped line

shape is often attributed to the orbital motion of a Keplerian
disk. Double-peaked emission lines have been observed in
many AGNs, which are believed to originate from the outer
part of an accretion disk at ≈1000 rg (e.g., Chen et al. 1989;
Eracleous & Halpern 1994; Strateva et al. 2003; Gaskell 2009)
illuminated by a central ionizing source. In addition to Doppler
broadening, relativistic effects are incorporated to model the
asymmetries seen in the double-peaked emission lines. For
example, a circular relativistic disk model (Chen et al. 1989;
Mathews 1982) is often employed to explain AGN spectra
where the emission lines have a double-peaked shape with a
stronger blue peak. The opposite case, in which the red peak is
stronger, could be achieved with an elliptical disk (Eracleous
et al. 1995). Such a model has been employed in fitting TDE
lines in several cases, for example, PTF09djl (Liu et al. 2017)
and ASASSN-14li (Cao et al. 2018).
Motivated by the theoretical line profiles of an elliptical disk,

Holoien et al. (2018) modeled the Hα line of AT2018zr
(PS18kh) at different epochs with the combining effects of an
elliptical disk, a spiral arm, and wind. Their model provides a
reasonable fit to the observed Hα emission line shape.
However, we find very little evidence for the double-peaked
Hα line profile as claimed by Holoien et al. (2018) in our host-
subtracted spectra. We suspect that the dip around line center in
their data is most likely due to the host starlight, which may not
have been cleanly removed. As shown by their fit, the observed
line center flux always drops more steeply than what the
elliptical disk model can reproduce. Furthermore, for a pure
Keplerian disk, a flat-top line is only expected under very
specific conditions, i.e., when the disk rotation axis is 15°
(Landt et al. 2014).
In addition, the X-ray observations favor the presence of an

accretion disk (van Velzen et al. 2019), which is not expected
in the elliptical disk model. In the case where the debris streams

Figure 11. Evolution of the FWHM of Hα (red circles) and Hβ (red squares)
for AT2018zr compared with the FWHM evolution of Hα for other well-
studied TDEs. The Hα and Hβline widths declined much slower at early times
than the other TDEs. The late-time line widths are almost as narrow as
ASASSN-14li. The FWHMs of the narrow components are shown with open
symbols.

Figure 10. Velocity profiles of the Lyα, Si IV λ1397, and Hα emission lines at
Δt=36 days. Both Lyα and Si IV λ1397 show a systemic blueshift of
∼3000 km s−1 relative to Hα, which suggests the lines were formed in
locations with different kinematics.
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do not circularize efficiently, the streams may retain high
eccentricities without forming a standard accretion disk
(Svirski et al. 2017). In this model, streams may plunge
directly into the black hole when some of the angular
momentum is removed, without losing any energy. Lastly,
the outer radius of the elliptical disk derived by Holoien et al.
(2018) is on the order of 15,000 rg, which is almost 2 orders of
magnitude greater than the self-intersection radius of a
nonspinning black hole with MBH=106.9Me (e.g., Wevers
et al. 2017; Dai et al 2015).

Overall, we do not find it necessary to invoke the elliptical
disk model to interpret the spectral line shape. Our spherical
outflow model provides a natural explanation for the flat-
topped line shape. Interestingly, the maximum outflow velocity
vmax∼1.75×104 km s−1 employed by our model is consis-
tent with the velocity of the BAL system. This coincidence may
be explained if the absorption lines are produced by this
spherically expanding material at its outer edge when it scatters
photons outside our line of sight.

5.3. High-velocity Transient BAL System

Observations of AT2018zr indicate the presence of the first
transient LoBAL system in a TDE, in which both high- and
low-ionization absorption lines are present. In addition, this
transient LoBAL system contains intrinsic hydrogen Balmer,
He I *λ3889, and He I *λ5876 absorption features. It turns out
that such systems are very rare, even in QSOs. Blueshifted,
broad high-ionization absorption lines are seen in about 10%–

20% of the optically selected QSOs (Hewett & Foltz 2003;
Reichard et al. 2003; Trump et al. 2006; Ganguly et al. 2007)
and are often attributed to accretion disk outflows. However,
only about 15% of the BALQSOs also show LoBALs such as
Mg II λλ2796, 2803. A small fraction (15%) of the LoBAL
QSOs that show Fe II or Fe III absorption, such as that in Mrk
231, are dubbed FeLoBALs (e.g., Veilleux et al. 2016). Since
AT2018zr lacks common Fe II absorption in the NUV, it does
not fit into the FeLoBAL category. Currently, there are only a
handful of BALQSOs that exhibit hydrogen Balmer absorption
lines (e.g., Aoki 2010; Ji et al. 2012; Zhang et al. 2015; Shi
et al. 2016; Sun et al. 2017; Schulze et al. 2018).

Although stellar Balmer absorption lines are often seen in
galaxy spectra, it is unlikely that the ones we see in AT2018zr
are due to intervening galaxies or clouds for the following
reasons. First, high-ionization absorption troughs are detected
at the same velocities as the H Balmer absorption lines,
suggesting a dynamical association between them. Second,
multi-epoch optical spectra captured the appearance and
disappearance of the H Balmer absorptions on a timescale of
days, which is unexpectedly short if the absorption is due to
intervening gas. Third, the He I *λ3889 line must arise from the
metastable 23S level, which is mainly populated by a
recombination of singly ionized helium ions that require a
significant amount of photons with E>24.6 eV (Rudy et al.
1985). The He I *λ3889 is not seen in the interstellar medium,
since the diffuse stellar background offers too few photons that
can ionize helium and too many with E>4.8 eV that can
ionize the electron in its metastable state. Lastly, since the TDE
is relatively nearby, we should be able to resolve the
intervening galaxies with imaging, yet we do not find any.

5.3.1. Outflows

Following a star’s disruption, the mass initially falls back at
a super-Eddington rate and gradually decreases below the
Eddington rate. Super-Eddington accretion is capable of
driving powerful outflows with radiation pressure (e.g., King
& Pounds 2003; Ohsuga et al. 2005). Strubbe & Quataert
(2011) made the first predictions of the spectroscopic
signatures of super-Eddington outflows in a TDE environment.
Their predicted spectrum is characterized by broad, blueshifted
(vwind∼0.01c–0.1c) absorption features in the super-Edding-
ton phase. Most of these absorption features are high-ionization
lines (χion>13.6 eV) because of the assumption of a hot
continuum with a temperature T 10bb

5 K. Since the velocity
and density of the outflow are viewing angle–dependent, their
model is also able to produce spectra with more NUV and
optical absorption lines, such as Mg II λλ2796, 2803 and the
hydrogen Balmer lines, as a result of a softer continuum. In
general, their model predicts a spectrum similar to that of a
BALQSO and hence is similar to our observations of
AT2018zr. However, they predicted a rapid photospheric
temperature evolution and a steep t−95/36 (Strubbe &
Quataert 2009; Lodato & Rossi 2011) decline in optical flux,
which is not seen in the data.
More recent work has refined the theoretical understanding

of how TDEs might be associated with wide-angle outflows.
Miller (2015) suggested that winds launched by radiation
pressure on absorption lines may remove material as it is drawn
in through an extended disk, which would lead to a range of
outflow velocities. Metzger & Stone (2016) studied mass-
loaded winds launched by both accretion luminosity and
energy released during debris circularization. They found
minimum outflow velocities of ∼10,000 km s−1, similar to the
velocities measured here. They also pointed out that a shell of
promptly launched material will surround the wind consisting
of material that has fallen back more recently. Colder material
at the edge of this shell might provide the origin of the
blueshifted absorption troughs seen in the optical spectra of this
event.
Another approach has been to perform hydrodynamic

simulations of super-Eddington accretion flows, accounting
for the effects of radiation pressure, magnetic fields, and
general relativity, and apply these findings to TDEs (Saḑowski
et al. 2014; Jiang et al. 2017; Dai et al. 2018; Curd &
Narayan 2019). In particular, Dai et al. (2018) emphasized the
viewing angle dependence of the outflow and its resulting
emission. While material ejected in the polar direction has a
relativistic velocity and is transparent to X-rays, material
launched closer to the midplane has a slower velocity due to
mass loading, and X-ray emission is highly suppressed along
those lines of sight. The results for such a viewing geometry are
consistent with many aspects of this event, although the time-
dependent behavior of this model requires further study.
The simplest super-Eddington outflow models assume that

the wind velocity is a near-unity fraction of the escape velocity
of the gas from the position where it is launched (Strubbe &
Quataert 2009; Lodato & Rossi 2011). This would require the
outflowing gas to be launched from a radius of ≈1015 cm to
match the observed velocity of 0.05c for the absorption
features, though the black hole mass estimation may be
somewhat uncertain. However, this radius derived from the
velocity of the absorption features appears to be in tension with
the blackbody radius derived from the UV and optical
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photometry. The blackbody radius is found to be steadily
decreasing from 1015.1 cm near peak to 1014 cm at
Δt∼250 days (van Velzen et al. 2019). In this picture, the
outflow would be launched at a radius slightly larger than that
traced by the blackbody radius in AT2018zr when we first
observed the Hβ absorption on day 30. Meanwhile, our
modeling of the emission lines requires the continuum
photosphere to be located within the edge of the outflow.
Accounting for deviations from a pure blackbody emitter as
appropriate for a scattering-dominated atmosphere would only
move the thermalization radius of the continuum to smaller
radii (e.g., Roth et al. 2016), exacerbating the problem. A
natural solution is for mass loading to reduce the final velocity
of the outflow (Metzger & Stone 2016), allowing it to be
originally launched from smaller radii while matching the
velocity seen in the absorption features.

The only other TDE in a quiescent galaxy that exhibits
transient broad absorption features (in that case, Mg II λλ2796,
2803) with a comparable blueshift (13,000 km s−1) to
AT2018zr (Chornock et al. 2014) is PS1-11af. The velocity
of the absorbing material in PS1-11af is consistent with an
outflow launched near the blackbody radius (Chornock et al.
2014). On the other hand, the line width of Mg II λλ2796, 2803
(FWHM≈10,200 km s−1) in PS1-11af is much broader than
the absorption lines in AT2018zr (FWHM∼3000 km s−1 for
low-ionization lines and ∼10,000 km s−1 for high-ionization
lines). The BALs are expected in the super-Eddington phase
due to the wide range of gas velocities present in the outflow.
This gives rise to a line width that is similar to the wind
velocity (Strubbe & Quataert 2011). The fact that the
absorption lines in AT2018zr are narrower and detached from
their emission peaks may be a viewing angle effect. For
example, a few BALQSOs have been reported with detached
absorption troughs (e.g., PG1254+046; Hamann 1998). This
may happen when our line of sight does not align with the wind
such that the materials have already been substantially
accelerated when it intersects our line of sight.

Although many TDE spectroscopic features resemble those
of BALQSOs, at least a fraction of the BALQSOs have low
Eddington ratios (L/LEdd<0.1; Grupe & Nousek 2015),
which must have a different mechanism to drive strong
outflows. Indeed, the BALQSO wind is thought to be driven
by line opacity in a partially ionized gas. In the line-driven
wind framework proposed by Murray et al. (1995), dense gas
that shields the soft X-ray near the hot QSO ionizing source is
required to avoid overionization and drive the BAL outflows.
Interestingly, the analysis of X-ray observations of AT2018zr
also suggests some X-ray obscuring material residing outside
the TDE photosphere (van Velzen et al. 2019). It is therefore
also possible that the LoBAL in AT2018zr is powered by line
opacity, though most BALQSOs are associated with black
holes that are too massive (MBH>108Me) to tidally disrupt
solar-type stars (Strubbe & Quataert 2011).

Despite the TDE sample with UV spectroscopic observations
still being small, the fraction of TDEs that exhibit BAL features
in the UV (three out of four; Section 5.1) seems to be higher
than the fraction (∼20%) of BALQSOs, which is often
attributed to the orientation effect in disk winds. This may
suggest that the TDE outflows have different geometries than
the QSO outflows and are less sensitive to viewing angle.
Interestingly, the UV spectra of AT2018zr continue to support

the coincidence of BALs in X-ray-weak TDEs, as suggested by
Yang et al. (2017). Future HST observations of TDEs are
desirable for verifying the large fraction of BALs in TDEs and
their potential anticorrelation with X-ray emission.

5.3.2. Unbound Debris

Although the blueshifted absorption features are known to
form in disk winds, we also consider the unbound stellar debris
as a possible absorber. In a tidal disruption, about half of the
disrupted star gains enough energy to escape the black hole on
a hyperbolic trajectory, reaching a terminal velocity of
11,000 km s−1 (Krolik et al. 2016). Simulations by Strubbe &
Quataert (2009) showed that the unbound debris irradiated by
the accretion disk will produce emission lines at the optical–IR
wavelengths. It is therefore possible that the rapid evolution in
density (ρ) and column density (N) of the unbound debris,
where ρ∝t−3 and N∝t−2, is causing the variability of the
Balmer absorption seen on a timescale of a few days.
However, the orientation required for an observer to see the

high-velocity unbound debris stream, as depicted in Figure 12,
will also cover the slower portions of the stream, as well as the
infalling bound stellar debris. The emergent spectra should,
therefore, have broader line widths and even inflow signatures.
However, these are clearly inconsistent with our observations,
where the photosphere is eclipsed by material at a radial
velocity of 15,500 km s−1 with a small dispersion of only
∼3000 km s−1.

5.3.3. Physical Conditions

Throughout the monitoring period, no significant accelera-
tion or deacceleration in the absorbing material is detected,

Figure 12. To-scale sketch of the stellar debris at the time corresponding to the
spectral outflow signature. The red and blue curves trace out the outflowing and
inflowing stellar debris streams, respectively. The viewing geometry is chosen
to allow the unbound debris to provide the high-velocity absorption lines.
However, in such a geometry, a wide range of gas velocities in the debris
stream would intercept the optical photosphere, so we ultimately disfavor the
debris stream as the origin of the high-velocity absorption lines. In order to
identify the features of this diagram more clearly, we have stretched the
horizontal distance axis by a factor of 5. We have referred to Coughlin et al.
(2016) to determine the radial location of the portion of the stream at zero radial
velocity.
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given the fact that the absorption features did not show any
significant velocity offset between different epochs. Assuming
the absorbing material has been traveling at constant velocity
(v=15,500 km s−1) since peak light (tpeak), it would have
reached a distance of ∼5×1015 cm by the time we first
observed the Hβ absorption at Δt∼30 days. This distance is
just outside of the continuum photosphere estimated from the
blackbody fit (van Velzen et al. 2019).

Observations have revealed a handful of QSOs with
hydrogen Balmer and/or metastable helium lines in their
BAL systems. Comparisons of these observations with
photoionization models have constrained the ionization para-
meters and densities of the outflows with the photoionization
code CLOUDY, which, in turn, can constrain the kinetic
luminosities of the outflows. Below, we summarize the
physical conditions that give rise to the hydrogen Balmer and
helium lines based on these works. In particular, we reference
the values derived with CLOUDY version 17.00 (Ferland et al.
2013) by Hamann et al. (2019), given the presence of similar
species in the transient absorber in PG 1411+442. In their
calculation, Hamann et al. (2019) employed plane-parallel
clouds with solar abundances and an input continuum with a
broken power-law form fν∝να, where αUV=−0.5 and −0.9.
In general, the TDE disk spectrum is thought to be harder than
that of an AGN, given the smaller size of the accretion disk.
Although this high-energy tail of X-ray emission is rarely
seen in optically selected TDEs, it has been suggested that
the HeII4686 and Bowen emission lines may be indirect
evidence for extreme UV or reprocessed X-ray emission (e.g.,
Blagorodnova et al. 2019; Leloudas et al. 2019).

Strong helium transitions from the metastable 2 s level occur
at λ3889 and λ10830, which correspond to transitions from the
metastable state to the 3p and 2p states, respectively. Although
once considered a rare phenomenon, Liu et al. (2015) found a
high association rate between He I *λ3889 and the
Mg II λλ2796, 2803 doublet among BALQSOs with high-S/
N spectra (93% at S/N35). Leighly et al. (2011)
demonstrated that the He I *λ3889 and He I *λ10830 lines can
serve as a powerful diagnostic of high column density outflow.
This is due to the large λfik ratio

16 of 23.3, which makes the
He I* lines sensitive to a wide range of high column densities
(τ∝Nionλfik) before saturating. Unfortunately, we are unable
to carry out a similar analysis due to the He I *λ10830 line
falling outside our spectroscopic coverage. The presence of
He I

*

λ5876 provides additional constraints on the ionized gas.
Unlike He I *λ3889, He I

*

λ5876 arises from an energy state
that is not metastable and is readily depopulated by permitted
radiative decays via the λ10830 transition when the gas density
is low. Photoionization calculations have shown that a gas
density of log (nH/cm

−3)7 and an ionized column
density of log (NH/cm

−2)23 are required to produce
τ0(5876)∼0.1 (Hamann et al. 2019). The inferred high
density and column density are required to populate the highly
excited states and form the He I

*

λ5876 absorption line
regardless of the exact ionizing spectrum.

The blueshift velocity of AT2018zr is the highest among
QSOs with Balmer BALs (Zhang et al. 2015). Behind the
hydrogen recombination front, the partially ionized regions that
give rise to the H Balmer absorption lines usually have high
densities (typically ne∼106–9 cm−3; Zhang et al. 2015, and

references therein). Our analysis of the H Balmer absorption
lines has shown that even the high-order hydrogen Balmer
transitions are saturated. Photoionization modeling with
CLOUDY suggests that a density of - nlog cm 6.5H

3( ) and
a column density of - Nlog cm 23.2H

2( ) are required to
produce τ0(Hγ)1.3 regardless of the ionization parameter U
(Hamann et al. 2019).
With the above estimation of density and column density, a

cloud size of 1016 cm can be inferred from NH/nH (assuming
log (nH/cm

−3)=7 and - Nlog cm 23H
2( ) ). Assuming a

spherical cloud, we estimate a total mass of 4.4×10−3Me
and a kinetic energy of 1049 erg. The mass and kinetic energy
of the outflow in AT2018zr are about an order of magnitude
greater than that in ASASSN-14li, which is known to host an
outflow with comparable velocity (12,000–36,000 km s−1), as
derived from radio observations (Alexander et al. 2016). Note
that radio emission, which is expected as the outflow shocks
against the circumnuclear matter (CNM), is not detected in
AT2018zr at a 3σupper limit of 1037 ergs−1 at 10 GHz (van
Velzen et al. 2019). While the HST data show unambiguous
evidence for the presence of an outflow, the nondetection at the
radio frequency may be due to the radio signal being buried by
the dense CNM.
Detailed, accurate characterization of the broad emission and

absorption lines in the UV is necessary for robust estimation of
the transient absorber properties (e.g., column density). In
particular, the column density and density are critical
parameters to measure the kinetic luminosity, which can be
used to examine different TDE outflow models and assess their
importance in the context feedback in galaxy evolution.

6. Conclusion

We report the results of our analysis of multi-epoch UV and
optical spectra of the TDE AT2018zr observed between 2018
March and December. The wide wavelength coverage of the
HST STIS UV spectra (∼1150–3000Å), together with the
Keck LRIS spectra (∼3500–9000Å), allows us to identify
highly blueshifted (15,500 km s−1, or 0.05c) BALs in the UV
and optical, including the high- and low-ionization transitions
seen in LoBAL QSOs.
In this BAL system, we identified the first hydrogen Balmer

and metastable He I transitions, which are known to be rare in
QSOs, in a TDE. We conclude that this BAL system is more
likely the result of a high-velocity outflow launched by TDE
accretion flows, instead of the unbound debris. Given that the
presence of broad UV absorption lines is more common in
TDEs (three out of four) than in QSOs, this may suggest that
the outflow launching mechanisms in TDEs are less subjective
to orientation effects than those in QSOs.
Our curve-of-growth analysis shows that even the high-order

hydrogen Balmer absorption lines are saturated, and the
absorbing material only covers the background source partially.
By comparing with photoionization models for AGNs, we
conclude that the ionized gas must be characterized by a high
density (log (nH/cm

−3)7) and high column (log
(NH/cm

−2)23) based on the detection of He I *λ3889 and
He I *λ5876. The inference of high density and high column is
not very sensitive to the exact ionizing spectrum. In order to
give rise to the H Balmer absorption, the partially ionized gas
behind the hydrogen recombination front must also have high
column densities. More UV and optical spectroscopic observa-
tions of TDEs will allow detailed photoionization modeling to

16 Here λfik (wavelength of the transition ×oscillator strength) is a
measurement of the optical depth of an absorption line (see Equation (3)).
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assess whether TDE outflows provide significant “feedback” in
the context of galaxy evolution.

Using a radiative transfer model, we show that the emission
profile seen in expanding TDE outflows (Roth & Kasen 2018)
is similar to the flat-topped Hα line shape in our observations.
We find that the spherical outflow model alone, with a
maximum velocity of 1.75×104 km s−1 close to the velocity
of the aforementioned BAL, provides a satisfactory fit to the
observed line profile. While the elliptical disk model has been
invoked to interpret emission lines in several TDEs, it requires
stringent conditions in order to produce the line shape in
AT2018zr. Furthermore, the implied disk size from the
elliptical disk model is 2 orders of magnitude larger than the
stream self-intersection radius, which is difficult to explain
from the perspective of debris stream dynamics.

We report the appearance of narrow He II λ4686, Hα, and
Hβ emission lines in the late-time optical spectra of AT2018zr.
The line widths of these transitions imply a virial radius on the
order of 1017cm. We suggest that the presence of He II λ4686
and N III λ4640 emission in later observations may be driven
by the temperature increase in the late-time UV and optical
continuum.

The TDE spectra are thought to be rather featureless; hence,
the spectroscopic analysis has been focused on the emission
lines in the past. We emphasize that subtle features, such as the
highly blueshifted H Balmer absorption lines in AT2018zr,
may also be present in TDE spectra as a result of outflows.
High-S/N spectra with broad wavelength coverage are critical
for identifying these absorption features in the UV and optical.
We also recommend monitoring future TDEs with spectrosc-
opy on a weekly basis, since, as we have shown with
AT2018zr, the spectroscopic features—both emission and
absorption—are variable on such a timescale.
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